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ABSTRACT 

In this paper we study various classes of locally convex analytic functions in 
the unit disc, which are invariant under the group of Mobius automorphisms 
of the unit disc, Bounds for the Schwarzian derivative of functions in these 
classes are achieved and used to obtain estimates for the uniform hyperbolic 
radius of univalence in these classes. 

1. Introduction 

Let f ( z )  be a locally univalent analytic function in the unit disc A = 
{z :1 z J < 1 }. Thenf(z)  is convex in A (i.e. D = f(A) is convex in C) if and only 
iff(z) satisfies either one of the following two inequalities (see [1] p. 5): 

(1.1) 1 + R e Z f " ( Z ) > o ,  z ~ A  
f ' ( z )  

o r  

(1.2) (I- Iz =y"(z)f 2,~ =< 2, 
" f ' ( z )  

z ~ A .  

On the other hand Nehari proved in [6] that iff(z) is convex in A, then 

(1.3) ( 1 -  Iz[2)ElSf(z)l =<2, zEA,  

where Si(z)  is the Schwarzian derivative off(z), defined by 

Sf(z)  = ~o~(z) - ½ ~of(z) 2, ~of(z) =- f " ( z ) /  f ' ( z ) .  
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In view of inequalities (1.1), (1.2) and (1.3) we define the following three 
classes of analytic functions in A: 

(i) Let K(r) be the class of all locally univalent analytic functions in A 
which are convex on every hyperbolic disc in A of hyperbolic radius p -- 
½ log((1 + r)/(1 - r)) for some r =< 1. In other words fU.K(r) if and only if 
fog satisfies inequality (1.1) in the disc Ar = ( z : l z l  < r }  for every g ( z ) =  
(z + ¢)/(1 + ~z), ¢ CA. 

(ii) Let ~(r /)  be the class of all locally univalent analytic functions in A 
which satisfy the inequality 

( 2) f ' ( z )  2~ _-<_2q 
(1.2') 1 - I z . f'(z) 

for all z ~ A and some t/>_- 1. 
(iii) Let ~( f l )  be the class of all locally univalent analytic functions in A 

which satisfy the inequality 

(1.3') ( 1  - Izl2)21Sf(z)l <= Eft 

for all z E A  and some fl>_- 0. 
Thus, Nehari's result [6] may be stated as follows: 

~ (1 )  c o~'(1). 

Also, for r />  1 we have by Satz 2.4 in [7]: 

~(r /)  c 6e(r/2 + 3 x/~ q + 3). 

Other relations between the classes ~(r/),  K(r) and ~( f l )  which have been 
discovered by Pommerenke in [7] are: 

,~(q) C K(q - ~ - 1) (Satz 2.5 in [7]) (1.4) 

and 

(1.5) 

In this paper we show that 

(1.6) K(r) c ~v(1/r) ¢q 6/'(1/r 2) 

and 

(Folgerung 2.3 in [7]). 

(see Theorem 2) 

(1.7) ~'(r/) C ~(fl(q))  (see Theorem 3) 
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where fl(1) = 1 and 1 <fl(r/) < 1 + r/2 for r / >  1, so that (1.7) is an improve- 
ment on Satz 2.4 in [7]. 

Both (1.6) and (1.7) follow as consequences of Theorem 1 in which we 
consider a family of classes of locally convex analytic functions in A, and for 
each given class in this family we find values for r /and fl such that the given 

class is contained in .T(r/) N ~(f l ) .  
Using results of Beesack-Schwarz [2] and Minda [4] we derive from (1.6) 

and (1.7) estimates for the uniform radius of univalence of functions in K(r) 
and .~'(r/). In particular we obtain relations between the uniform radii of 
convexity and univalence for every universal covering map from A onto any 
hyperbolic domain of any connectivity. 

In the last section we apply the same technique as in the proof  of Theorem 1 
to obtain a refinement of Nehari 's result (1.3) in the class of convex functions 
of order a in A (see [3]) for all aE(0 ,  1). 

I am grateful to Professors H. M. Farkas, D. Minda and Wangcang Ma for 
their very helpful remarks. 

2. ~-Local convexity 

Let f(z) be a locally univalent analytic function in A. Denote ~0s(z ) = 
f"(z)/f'(z) and ~i(z;()=~Oiog(Z)=(fog)"(z)/(fog)'(z), where g(z)= 
(z + ()/(1 + (z), ( E A .  Then 

2 z + (  
(2.1) (l+:z)2~of(z;()=(1-1(I)~OS(l--~z)-2:(l+:z), ( z , ( ) ~ A X A .  

Let [~ be a simply connected domain in C with at least two boundary points 
and r ~ (0, 1). If the condition 

(2.2) w = 1 + z t & ( z ; ~ ) ~ ,  forevery zEAr  ={z:lzl <r} andal l  (CA.  

holds, We say that f(z) is ~-locally convex with radius r, and denote by K(f~; r) 
the class of all such functions. 

REMARKS. (i) Obviously by definition we have 

(2.3) K(r) = K(f~; r) for D = {w: Re w > 0}. 

(ii) Every class K(~;  r) is linearly-invariant in the sense that f o  g E K ( ~ ;  r) 
for eve ry fEK(D;  r) and g(z) = (z + ()/(1 + (z), (z, ( ) E A  × A. 

(iii) By condition (2.2) we notice that 1 E l L  Hence, by the Riemann 
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(2.4) 

and 

2}f"(z) 2~ 2 
(2.5) ( 1 - [ z i 2 ) 2 1 S f ( z ) [ + C  ( 1 - [ z  " f ' ( z ) -  

where C = 7'(1) - ½11 + 7"(1)/7'(1)1. 

Mapping Theorem there exists a unique analytic function "/(w) that maps f2 
onto A, such that 7(1) = 0 and 7'(1) > 0. 

THEOREM 1. I f f ~ K ( ~ ;  r) for a given f~ and rE(O, l], then 

f"(z~ 22 2) a " " - -  --< 7 '(1)-lr  -1, z ~ A  (1 - [ z  "f'(z) 

=< 7 '(1)- lr  -2, z ~ A ,  

PROOF. By definitions of  K(~;  r) and 7(w), it readily follows that the 
composition 7(1 + z~o:(z; ()) is an analytic function of  z which maps Ar ---- 
{z :[ z [ < r} into A and it vanishes at z = 0. Hence by the Schwarz Lemma we 
conclude that the function 

F(z; ()  = 7(1 + z~i(z; ())/z, (z, ( ) E A  × A 

is also analytic in z and maps Ar into A,-,. Theorefore we have in particular 

(2.6) IF(0; ()1 _-< 1/r, (CA,  

and by the invariant formulation of  the Schwarz Lemma we obtain 

rlg'(z;~)l  < r (z, ( )EA,  × A. 
1 - r2lF(z; ()12--- r 2 -  Izl 2 ' 

Hence we derive at z = 0: 

(2.7) [F~'(0; ()l  + IF(0; ()12< 1/r z, ( ~ A .  

Expanding F(z; () into a power series in z: 

f ' °  . ,0 t F(z;()=7'(1)q~:(O;()+ 7(10~zq/(z; +½7"(1)~of(0;() 2 z + - . .  

and using (2.1), we get 

F(0; ~) = 7'(l)qz(0; ( )  = 7'(1)[(1 - If  [1)tP:(() - 2(] 

and 
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0 z 17"(1_____)) 
7 '(1)- 'F '(0;  () = ~zz q~f( ; ( )1.=o+ 2 7'(1) q~f(O; ()2 

= (1 - I(  tb:~ , ) (O - 2 ( [ ( 1  - I(  Ib~,s(O - (1 + ! 7"(1____)) tpf(0; ( )2  
2 7'(1) 

- [  ( [2)2[q~(()- ½~oi(()2] + l  (1 + ?"(1)~ [ (1_ [ ¢ [2)~0/¢)-2¢12. ~ (1  
2 \ 7'(1)/ 

Thus, inequalities (2.4) and (2.5), respectively, readily follow from (2.6) and 
(2.7). q.e.d. 

Given 1) and r ~ (0, l) as above, then 

K(D; r) c ;~(r/) n se(/~) 

COROLLARY 1. 

(2.8) 

where 

(2.9) 

and 

= r/(fl; r) = ½7'(1)-~r - '  

(2.10) fl = f l (n ;  r) = ½max{7'(1), ½11 + 7"(1)/7"(1)1 }y'(l)-2r -z. 

PROOF. By (2.4) we see that K(fl; r) lies in ~(r/),  for the ~/given by (2.9). 
Also, if 7'(1) > ½11 + y"(1)/7'(1) I, then C >= 0 and hence we have by (2.5) 

(l -- Iz 12)21Sf(z)l =< 7'(1)-1r -2 = 2fl(fl; r) 

for everyfEK(f l ;  r) and all z EA. 
Finally, if ~ '(1)< J[ 1 + Y"(1)/7'(l)l, so that C < 0 ,  then (2.5) and (2.4) 

imply 

i I ( 1 -  Izlb21Si(z)l ~-~ 

for al l fEK(f~;  r) and zEA. 

1 + 7"(1)  7 , ( 1 ) _ 2 r _  2 = 2fl(t~; r) 
7'(1) 

q.e.d. 

REMARK. Using Satz 2.5 in [7] (see (1.4)) and a generalization of Nehari's 
univalence criterion [5] due to Beesack-Schwarz [2] and Minda [4], one may 
derive from Corollary 1 lower bounds for the uniform hyperbolic radii of 
convexity and univalence for all f i n  K(f~; r). 

In another direction one can localize (2.4) and (2.7) and derive coefficient 
inequalities for normalized functions in K(fl; r): 
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COROLLARY 2. 

then 
If f(z)  = z + Z,~=2 a,z" EK(fZ; r)forgiven ~ andr E(0, 1], 

(2.11) [a2l < ½7'(1)-lr - '  

and 

2 ~'(1) ~'(1)-2r-2" 

Next, applying Theorem 1 to the class K(fi, r) -- K(~2(d); r), where ~2(~) = 
{w : iarg w l < n~/2}, for 0 _-< r _-< min(1, ~), ~ > 0, we obtain the relation (1.6) 
in an improved form: 

THEOREM 2. I f f E K ( &  r) for given (~, r as above, then 

1 ( ~ 2~ 2 (2.13) (1-1z[2)zlSs(z)[+~-~ 1 - [ z ]  2) =<2Or -2, zEA.  

Hence we have in particular 

(2.14) K(6, r) C ~(~/r )  0 b°(~/r2). 

PROOF. Indeed, in this case we take 7(w)= (w ~/6- l)/(wl/6 + 1) which 
maps ~(0) onto A and compute: 

~,'(1)=1/2~, - - = - 1  and C - - ? ' ( 1 ) = l / 2 f i .  

Thus (2.5) readily yields (2.13), and (2.14) as well. q.e.d. 

Notice that in the case r = ~ = 1, Theorem 2 implies an improvement on 
Nehari's necessary condition (1.3) for convexity (cf. [8]): 

COROLLARY 3. Let f (z)  be a convex analytic function in A. Then 

2) f ' ( z )  2~ < 2  (2.13') (1- ]z lZ)z lgf (z) l  + ( 1 - I z  " f ' (z)  = 

holds for all z E A  and is sharp, as equality is attained identically in A by all the 

functions 
fp(z) -- {(1 - z)/(1 + z)} p, f o r f l E (  - 1, 1), fl ~ 0 

and 

f0(z) -- log[(1 -- z)/(1 + z)]. 
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Theorem 3 in [2] (or Theorem 3 in [4]) yields the following geometric 
interpretation of Theorem 2 in the case ~ = 1: 

COROLLARY 4. I f f eK(r )  for some re(O, 1), then f(z) is uniformly locally 
univalent in the sense of[4], that is, f(z) is univalent in every hyperbolic disc in 
A, of hyperbolic radius 

(2.15) Pu(f) > -rt _ _ r  =-~r sinh pc ( f )  
2x/1 - r  2 2 

where pc( f )  = ~log[(l - r)/(1 + r)] is the uniform hyperbolic radius of convexity 
off( z ). 

PROOF. By Theorem 3 in [2] (cf. [4]),flz)is univalent in every hyperbolic 
disc in A of hyperbolic radius p = n/2k, provided that f e  6¢(1 + k2). On the 
other hand, by Theorem 2, i f f eK(r ) ,  then fe .~ ( r -2 ) ,  i.e. k = (r - 2 -  1) ~/2, 
and (2.15) fol lows,  q.e.d. 

REMARK. Conversely, from Theorem 4 in [4], Folgerung 2.3 and Satz 2.5 

in [7] we conclude that iff(z) is univalent in every hyperbolic disc in A of a 
pseudo-hyperbolic radius R = tanh pu ( f )  = ru ( f ) >  0, then 

f e  .gV(3R -2) C .~(x/1 + 3R -2) C K(x/1 + 3R - 2 -  x/~R -~). 

3. The  class  ~ ( q )  and the Schwarzian  derivative 

In this section we apply Theorem 1 to the class ~'(r/) and find, in particular, 
an estimate for fl, such that ~'(q) c 5e(fl). 

First we show that every function f e ~ ( ~ / )  is fl(r/, r)-locally convex with 
radius r, for all r e (0, 1), where 

{ t l+ r2 [  2rlr~ ~( r / , r )=  w: w < . 
1 - r E 1 --  r2J 

LEMMA 1. Let q >= l. Then 

(3.1) ¢~(r/) = f-) {K(f~(q, r); r), r e (0 ,  1)}. 

PROOF. Observe, first, that condition (1.2') may be written as follows: 

(fog)"(0) 1 (3.2) ~ =< 2)/ 

for every M6bius automorphism g(~) = (a( + z)/(l + a2() of A. Hence, the 
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class # '(q) is linearly-invariant (cf. [7]) in the sense that fo  g E #'(r/) for every 
fE,~ ' (q)  and all M6bius automorphisms g(~) of A. Also notice that inequality 
(1.2') may be written in the form 

[ l + [ z ' 2 [  2qlz[  
(3.3) 1 + zq~f(z) 1 - [z [2 --< 1 - [ z [  2 , q~f(z) = f"(z) / f ' (z) ,  z EA. 

Hence, f E  ~ ( q )  if and only if 

I l z os(z; ¢) + 
1 + [z l  2 2~/Izl  

1 ~ - ~  < - -  - 1 - I z l  z ' 

holds for all (z, ( ) E A  × A, where ~oi(z; ()  is defined in (2.1). This means that 
w =  1 +z~oi(z;()Ef~(~l,lz[) for all ( z , ( ) E A X A .  But f l(r / , lzl)Cf~(~/ ,r)  
whenever [z I < r, for every r _-< 1 =< r/and this completes the proof, q.e.d. 

THEOREM 3. I f fE~r (q )  for some rl >-_ 1, then 

(3.4) 

and 

(3.5) 

where 

~ (  ~ 2z2 ( 1 -  Izl2)ZlSf(z)l + 1 - I z l  2) _-< 2p(r/), z E a  

(1-  Izlb21aAz)l 2p(q),  zEA, 

p(q) = q2 + (q + l/2r/)x/r/2 _ 1. 

and 1 <= fl(q) < 1 + rl 2 is given by: 

(3.6) #(r/) = 1 + q2 

and 

for q > x/ l  + x/~ 

(3.6') 

fl(r/) = 1 [ (27r /4_  1 8 7 ] 2  1 ) +  ( ;72 -  1)1/2(9t/2-- 1) 3/2] 

for l < tl < ~ /  l + ~/-2 

PROOF. By Lemma 1, if f E b ( r / )  thenfEK(g2(q,  r); r) for every rE(0 ,  1). 
Therefore we can apply Theorem 1 to the case that ~ = fl(r/, r) for a fixed 
~/->_ 1 and a variable r E (0, 1). Thus 

q(l - r2)(w - 1) 
7(w) = : t)0l, r ) - -A,  

r[(1 - r2)w + (2q 2 - r 2 - 1)] 
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and 

r/(1 - r 2) 7"(1) 1 - -  r 2 

y ' ( l )  2r(r/2 ~ r2) ' ~'(1) r/2 _ r 2 

C = 7 ' ( 1 ) -  ½ll + 7"(1)/7'(1)1 = C(r) = 

Hence inequality (2.5) yields: 

(3.7) ( 1 -  Izl2)21Sf(z)l + C(r) ( 1 -  Iz 2) f ' ( z )  
" f ' ( z )  

where 

1 - r / r  

2 r ( r / -  r) 

- - -  2g 2 ~ 2q(r), z EA, 

q (r) = ½~'(1) - l r -  2 = (r/2 _ r2)/[ r/r (1 - r2)]. 

Now if we set r = r / -  ~/r/2 _ 1, (3.7) implies (3.4) with the given p(r/). 
Next, notice that C(r)> 0 only for r E(0,  l/r/) and therefore 

2q(r) for 1 _-< r _-< l/r/, 
(3.7') ( 1  - Izl2)ZISf(z)l <-_[2q(r)_4r/EC(r ) forr>__ 1/r/. 

Observe now that the m i n i m u m  value o fq( r )  in the interval (0, 1) is at tained at 
ro=  {½[(3r/z- 1 ) - ( r / 2 _  1) , ,1(9r/2 1),,2]}~,2, and q(ro)=fl(r / )  as given in 

(3.6'). But ro _-< l / r /only  for 17 -5 x/1 + x/~, and if r/>___ .,/1 + v/2 then q(r) >-_ 
q(l/r/) = 1 + r/2 for all r E ( 0 ,  I/r/]. On the other hand 

r/2_ 1 + _ 
q(r ) -2r /2C(r )=  ~ r/ r 1 

which obviously is an increasing function o f r  in the interval l/r/_-< r < 1, and 

therefore we get in that interval 

q(r) -- 2r/2C(r) >_- q(l/r/)  - 2r/2C(1/r/) = q(1/r/) -- 1 + r/2. 

This proves (3.5) with the 17(~/) given by (3.6) and (3.6'). q.e.d. 

Using the arguments of  the proof  of  Corollary 4 we conclude: 

COROLLARY 5. Let f E ~ ( r/ ) for some r~ > 1. Then f ( z  ) is univalent in every 
hyperbolic disc in A with the hyperbolic radius 

(3.8) p.( f )  >= 7t/2x/fl(r/) - 1 >= lt/2r/. 
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Next we derive some coefficient inequalities for normalized functions 

f ( z )  = z + X,%2 a,z"  in ~ (q ) .  

COROLLARY 6. Let  f ( z )  = -" + Y~, =2 a ,z"  ~ ( r l )  for  some rl >= 1. Then 

(3.9) l a 3 -  a ] l +  ~31a212 ~ ][rfl + ( r /+  1/2rl)x/q 2 -  1], 

(3.1o) la3 - a221 < fl(q)/3 < (1 + q2)13 

and 

(3.11) la3l < q :  2 r / Z - l ( 2 q - , f r / 2 + 3 ) . - -  
6q 

PROOF. Inequalities (3.9) and (3.10) are localized versions of (3.4) and 
(3.5), respectively, at z = 0. 

Next, if we substitute the values of 7'(1) and 7"(1)/~,'(1), that have been 
computed in the proof  of Theorem 3, into (2.12), we obtain 

lasl < ]max[(1 - rZ)q, (1 + 2r/2 - 3r2)r] 
r/2 - r 2 

rl2r(1 - r2) 2 
= As(r), 

for every r U (0, 1), and hence 

la31 --< min As(r) = As((,,/q 2 + 3 - r/)/3) 
0 < r < l  

= 17 2 2 ? / 2  - -  1 (2q - x/r/2 + 3). q.e.d. 
61/ 

4. Convex functions of order a 

An analytic function f ( z )  in A is convex of order a, for some a ~ (0, 1 ), if f (z) 

satisfies the improved convexity condition 

+ Re zf"(z) (4.1) 1 > a ,  z ~ A  (see [3]). 
f'(z) 

Although the class of all convex functions of order a in A is not a linearly- 
invariant family, for a > 0, the technique of the proof  of Theorem 1 may be 
applied here to derive sharp bounds for 1 ( 1 -  Iz12)qf(z)-221 and for 

( 1 -  [zIZ)2IS/(z)[. 
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THEOREM 4. 

statements are equivalent: 
(i) f(z)  is convex of  order a in A. 
(ii) 

(4 .2 )  I(1-  , z , 2 ) ~  2, .< 2tl - =(1 - 1z,2)]1'2, 

(iii) 

(4.3) 

(iv) 

(4.4) 

(v) 

Let f(z)  be an analytic function in A. Then the following 

I 2) f ' ( z )  2~ " < 2 1 1 - a ( 1 -  Izl)],  
( 1 - [ z  " f ' ( z )  

( 1 - 1 z  12)~"Izl - 2(1 - a)~ 

(1 f"tz~ 1 2~J - - 
(4.5) ( 1 -  IzlE)21af(z)l + - I z  " f ( z )  

zEA. 

zEA. 

"<2(1 - a ) ,  z~A. 

- 2 ~  2 < 2 1 1 - a ( 1 -  Iz12)], z~A. 

PROOF. The implications (v)=, (ii) and (iv)=, (iii)=, (ii) are trivial. There- 
fore we just have to show that (ii) =* (i) and (i) implies both (iv) and (v). Indeed 
if we square (4.2) and simplify we obtain 

f"(z) 2 ( zf"(z)l  
< 4  1 - a + R e  0 < ( 1  - IzlZ) f ' ( z )  = f ' ( z )  ] 

and hence inequality (4.2) implies (4.1). 
Conversely, inequality (4.1) tells us that the analytic function w--1  + 

z~:(z), ~y(z)=f"(z)/ f ' (z) ,  maps the unit disc A into the half plane 
{w:Re w >a}.  This half plane is mapped back onto A by the mapping 
g(w) = (w - 1)/(w + 1 - 2a). Hence the composition of these two functions: 

g(1 + z~:(z)) = z~of(z) 
2(1 - ,~) + z~oAz)' 

¢f(z) = f " ( z ) / f ' ( z ) ,  

satisfies the requirements of the Schwarz Lemma, and therefore 

g(1 + z~Of(z)) ~of(z) 
F ( z )  = 

z 2(1 - a) + z~a:(z) 

maps A into itself. Hence we have 

(4.6) IF(z)[ .< 1 for al lz~A, 
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and  moreover ,  by the invar ian t  fo rmula t ion  o f  the Schwarz L e m m a  [ 1, p. 3], 

we ob ta in  

(4.7) (1 - IzlZ)lF'(z)l £ 1 - IF(z) l  2 for a l l z ~ A .  

Inequal i ty  (4.6) m a y  be wri t ten  as follows: 

I ~0f(z)[ 2 < 4(1 - a) 2 + 4(1 - a )Re  z~ot(z ) + [z~oy(z)[ 2, 

o r  

( 1 -  IzlZ)(t~of(z)l 2 4 ( 1 - a )  ~ , . 4 ( 1 - a )  2 6---  [ '~)  Kez~oltz)-~ ~ - i z l ' ~  2 tzl2)  

_ - < 4 ( 1 - a )  2 1 + 1 _  Iz 

which is inequal i ty  (4.4). Similarly,  inequal i ty  (4.7) m a y  be wri t ten  in the fo rm 

(1 - I z 12) 12(1 - a)~o~(z) - ~oj(z) 21 < 12(1 - a) + z~oj(z) l 2 - I ~oy(z) 12 

and,  since 0 =< a < 1, this inequal i ty  yields 

(1 - Iz 12)(2(1 - c01 ~o~(z) - ½~oAz)Zl - o~1 ~oj(z) 12} 

< 4(1 - a)[1 - a + Re z~of(z)] - (1 - I z IZ)l ~oAz)l z 

a n d  s impl i fy ing it we get 

(1 - Iz 12){l~o~(z)- ½~oi(z)21 + ½1 ~o~(z)l 2 - -  
2 

1 - -  l z l  2 Re z(os(z) t 

_-< 2(1 - a), z ~ A .  



Vol, 67, 1989 SCHWARZIAN DERIVATIVE 379 

Finally, adding 21z 12/(1 - -  I Z 12) tO both sides, inequality (4.5) fo l lows  at once.  

The funct ions  f ( z )  = (1 - z)  2"-1 for a ~ ½, or f ( z )  = log(1 - z )  for o~ = ½, 
show that all the condi t ions  ( i i ) - (v)  are sharp as necessary condit ions .  Further- 
more,  these funct ions  satisfy the equalit ies  in (4.4) and (4.5) identically in A. 

q.e.d. 

Inequalit ies  (4.4) and (4.5) readily yield at z = 0: 

COROLLARY 7. L e t f ( z )  = z + Z ~ , ~ 2 a, z n be a convex function o f  order a in 

A, for some a ~ (0, 1). Then 

(4.8) la21 < 1 - a ,  la3l < ~(1 - a ) ( 3  - 2a), 

and equalities are attained in both inequalities by the coefficients of  the function 

f ( z  ) = [1 - (1 - z )2"-l]/( 2a - l ) for  a ~ ~, or f ( z  ) = log(1 - z)  for  a = ½. 
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